KLIK SALAH SATU iklan DIBAWAH INI DULU ^_^

br/>

Tampilkan postingan dengan label Aplikasi Matematika. Tampilkan semua postingan
Tampilkan postingan dengan label Aplikasi Matematika. Tampilkan semua postingan

Lapangan Pekerjaan Menarik Menggunakan matematika

Lapangan Pekerjaan Menarik Menggunakan matematika


Balap liar

Pertanyaan paling jamak dan sering dikemukakan oleh siswa adalah apa manfaat belajar matematika? Pekerjaan apa yang nantinya terkait dengan ilmu matematika yang saat ini saya pelajari?
Setiap kali kita memikirkan pekerjaan yang melibatkan matematika, mungkin secara otomatis kepikiran seorang akuntan, atau manajer bank, atau sesuatu yang seperti itu. Padahal sebenarnya ada beberapa pekerjaan lain yang memerlukan penggunaan matematika yang mungkin tampak sedikit lebih menarik.
Inilah beberapa pekerjaan yang menggunakan matematika:
Pembalap
Berapa kecepatan terakhir saya di lap sebelumnya? Berapa banyak detik saya tertinggal atau meninggalkan? Berapa banyak lap yang bisa saya tempuh dengan tangki penuh? Seberapa cepat saya bisa membuat pit-stop? Berapa banyak tenaga kuda yang dihasilkan mesin ini? Apakah yang dimaksud tenaga kuda? Berapa banyak yang dapat RPM mesin saya membuat sebelum redline? Apa itu RPM? Berapa banyak tekanan udara yang saya perlukan untuk ban saya? Berapa tekanan oli mesin kendaraan saya? Semua ini menggunakan matematika.

Astronot / Bekerja di Industri Ruang Angkasa
Apakah yang dimaksud escape velocity? Seberapa tinggi orbit Space Shuttle? Berapa banyak waktu yang dibutuhkan sampai peluncuran? Berapa jam penerbangan yang harus saya lakukan agar memenuhi syarat? Seberapa dingin di luar atmosfer bumi? Apa yang dimaksud dengan kekuatan gravitasi? Berapa banyak kekuatan yang dihasilkan oleh roket pendorong? Berapa diameter bumi? Seberapa jauhkah planet Mars? Semua ini menggunakan matematika.

Pilot pesawat tempur
Seberapa tinggi aku terbang? Berapa kecepatan maksimum pesawat? Berapa banyak bahan bakar yang saya miliki? Seberapa jauh saya dapat terbang dengan tangki penuh? Jika musuh berada di pukul 5 apa artinya? Bagaimanpa arah dan kecepatan angin? Apakah yang dimaksud dengan F14? Berapa banyak rudal yang masih tersisa? Ke arah mana aku terbang? Apakah yang dimaksud kecepatan super sonic? Apa itu altimeter? Berapa besar derajat putaran yang saya butuhkan? Seberapa jauh posisi saya dari target atau markas? Semua ini menggunakan matematika.

Komentator Olahraga
Berapa banyak gol per pertandingan yang dia torehkan? Dari jarak berapa meter dia menembak? Seberapa cepat smash yang dilakukannya? Berapa banyak waktu yang tersisa dalam pertandingan? Dimana hasil ini akan menempatkan mereka di klasemen liga? Berapa peluang mereka lolos babak kualifikasi? Semua ini menggunakan matematika.

Radio DJ atau Engineer Radio
Berapa menit tersisa untuk lagu berikutnya? Kapan iklan komersial selanjutnya? Berapa banyak watt hal ini stasiun radio menghasilkan? Apakah arti FM atau AM? Jika stasiun radio berada di 104,4 FM apa artinya? Apakah waktu itu? Dapatkah saya memainkan musik 40 menit nonstop? Semua ini menggunakan matematika.

Kameramen
Berapa ukuran lensa yang saya perlukan? Seberapa jauh jarak saya dengan objek gambar? Berapa banyak intensitas cahaya? Berapa sudut tembak yang saya ambil? Seberapa jauh saya harus memperbesar atau memperkecil? Film Berapa banyak yang saya butuhkan? Rekaman Berapa banyak yang tersisa?
Semua ini menggunakan matematika.


Banyak ide-ide pekerjaan yang menggunakan Matematika. Contoh di atas hanya sebagian kecil ide untuk membukakan pikiran tentang seberapa penting penggunaan matematika yang kita pelajari di sekolah dalam kehidupan nyata sehari-hari.
Semoga tulisan saya tentang Lapangan Pekerjaan Menarik Menggunakan matematika ini dapat memberikan manfaat. Terima kasih.

Aplikasi Matematika Dunia Nyata

real world math applications

From Real World Math Applications to Pure Math and Back

Can you go from pure math to real world math applications? The answer is, no. You can not start with math only and then “apply” it to a real world scenario. It is, however, possible to use math in real world (even in fictional world, like in Harry Potter stories and movies), but the path and direction of applications are different and need to be clarified.
The reason you can not go from pure math to real world math application is in the very nature, definition (in a sense) of a number.
A number is obtained as an abstraction, a common numerical property of many counted objects.
By this very definition, because it is abstracted from counted objects, because it is, now, a separate concept, representing a pure count, without any object associated to it, you can not tell, by looking at the number only, where it came from, what and if anything has been counted to obtain that number. In other words, a number does not carry any information about any object extraneous to mathematics! Hence, you can not say, just looking at the number only, or at the sequence of math
operations on numbers, what its or their application, in real world, may be. Newton did not learn calculus first, then applied it to the gravitational problems! Quite the opposite happened. Newton was dealing with non mathematical, in this case physical, objects and relationships, like apple falling from the tree, Moon orbiting Earth, and other body motions. Unless they are quantified, these are not mathematical objects nor relationships. If they were, then you would see theorems in math books proved by apples, Moon, speed, etc. but it is not so! Math theorems are stipulated and proved using only mathematical concepts, like numbers, sets, set of numbers, or other mathematical theorems and axioms. So, lets make that clear, Newton first dealt with physical objects and their relationships and only then he invented calculus. So, when someone tells you will learn math then apply it, it is not quite true. Note one significant conclusion here. The logic and knowledge of the domain you are applying math to, be it physics, finance, apples, pears can never enter pure mathematics. You have to know them, but when developing math from them and
proving math discoveries, only mathematical concepts can and are used. Why would you need apples, and for that matter limit yourself to apples, to prove that 2 + 3 = 5 when the results is valid for apples, pears, cars, pencils, balls, as well? You prove that 2 + 3 = 5 using only mathematical concepts and then use that result in any of those real world situations. Of course, apples can be used to illustrate math concepts but always keep in mind it can be other objects as well.
When you deal with a number, you deal with an abstracted common numerical property, a separated concept abstracted from all the objects whose count it may represent.
Now, the very moment you start adding 2 apples and 3 apples you are doing two distinct steps.
First one is recognizing that the object to be counted is an apple. That recognition process, a categorization, that you are looking or holding an apple is outside mathematics, since you can be counting apples, pears, cars, books, cups. This recognition is a focus of research of cognitive science, psychology, biology, color research, even social sciences.
The second step (which is, actually, common to counting any kind of objects) is dealing with numbers 2 and 3 only. Even if you may not notice at this point, when dealing with numbers 2 and 3, you are dealing with counts that can represent not only apples, but millions of other kinds of objects that can be counted to obtain numbers, counts, 2 and 3. Hence, the numerical result of addition you obtained for 2 and 3 apples, i.e. 2 + 3 = 5, can be used in any other situation where you have 2 objects and 3 objects, of any kind, and you want to add their counts. Here, you right away invented and used "pure" mathematics when counted these apples. It is this universality, the common numeric property of counted objects, that gives mathematics ability to be a separate, independent discipline, to deal only with numbers.
While to us, and to the field that uses quantification, is very important what, when, why and where something is counted or measured, to investigate only the counts' properties is the task of pure math. Pure math does not care where the numbers or counts are coming from. It is very similar when we create a set of any objects (of interest), but we are only interested how many elements are in the set and not which objects are part of the set (that information, which objects are elements of
the set, we keep track of on a separate sheet of paper) ! Math knows and should know only about numbers and sets of numbers. Notice how math may be "motivated" by counting apples, but, the result obtained, i.e. 2 + 3 = 5, can be used when counting any other objects!
Also, math can't tell real world from fictional one! Look! If Harry Potter flies 10 m/s how many meters he will advance after flying 5 seconds?
Mathematics deals with numbers and with numbers only. It does not care where the numbers are coming from (but, in the field of applied math, we do care where the numbers are coming from).
Now, you may ask, how we can apply mathematics at all, if the trace what is counted is lost in this abstraction, in this definition of pure number? Well, here is how.
It is true that pure mathematics deals with numbers only and, of course with mathematical operations on them. We have abstracted, separated a concept of a number from all possible real world objects that might have been counted. Thus, when you say 5 + 3, you right away know that the answer will be 8. No real world objects are mentioned nor even thought of, when we did this addition. We just selected two numbers, and decided to do addition (we could also decide to do subtraction or multiplication). Now, how then we can apply math to real world if we don’t have a trace of what is counted? There is a way! When we want to “apply” or rather, use, math in real world, we will drag the names of objects counted into the math! We will keep track of numbers obtained, to know where they come from, which objects’ counts they represent.
How we do that? We will add a small letter, or abbreviation, or a word, name, just beside the count to tell us what we have counted. For instance, we can write numbers, 3, 5, 7, 10 after we counted (or measured) something. In order to keep track what we have counted we will add small letters right beside the numbers, like 3m, 5m, 7seconds, 10apples. Now, very important thing.
These added letters do not represent math. They are for us to keep track what is counted.
Unfortunately, frequently, this is all mixed up and students are often told they are doing math even when they describe what are they counted, why (to give 10 apples), where (apples from the basket, he went 3m downhill, then 5 meters uphill,), when (7seconds ago, not after). All this reasoning, descriptions, units, abbreviations, meters, seconds, apples, ago, before, after, downhill, uphill, do not belong to math. Why is that? Because, if you look in any pure mathematical textbook, you
will clearly see that no theorems are stated or proved by mentioning apples, meters, seconds, pears, etc. All the theorems are proved strictly in terms of mathematical objects, numbers, sets, set of numbers, using other theorems and axioms. No extraneous objects to mathematics or real world descriptions, like apples, cars, downhill, uphill, will ever enter a mathematical theorem or its proof.
Now, when we distinguished what is pure math and what is applied part of it, we can make more interesting and important conclusions. Pure mathematics deals with numbers and numbers only. Since number 3, say, can represent an abstracted count of so many, many objects, wouldn’t be interesting to have its properties investigated? It looks like there is some value in the fact that one concept, a number, stands for counts for so many objects. What we can do with pure numbers? We can compare number 3 with other numbers. We can say which numbers are greater than or less than other numbers. We can multiply them and see what numbers we are getting. And all the time we deal only with numbers. The value is, if we get some interesting result for a certain number or numbers, from our “pure” number investigation, we can use that result for all those examples in real world. That’s the value of pure math and its real life applications. But, in order to use it, say, in order to use 5 + 3 = 8, we have to make a match between pure math numbers and real world counts.
Mathematics does not see the reasoning from other worlds. Math will see number 6 (given, or picked, or measured), math will see number 10 (given, or picked, or measured), but it will treat them equally, in the same way, as numbers, no matter how they have been obtained.
Does it mean that these numbers, 10 and 6 can come from thin air to mathematics? No, they don’t come from thin air! Remember when we said that numbers, in pure math, are abstractions for all the objects they can represent count of. They are not from thin air, they exist in our math as our starting point. Our pure math has already numbers available for our use, 1, 2, 3,…10, …, etc.. How? We did not even need to find objects to count to obtain different numbers. We can start with 1, then add 1 to get 2, then add 1 to get 3, etc. That’s why we have numbers already available for us. We only pick them, and do the operations. Math, for that matter, doesn’t need to know if we counted apples, or pears, of chewing gums. It is enough for math to tell there is number 10 and number 6 and that we want to add them. It is us who will keep track why we counted (because Peter was hungry), what we counted (apples, they are edible), when we counted (in the evening, when was the time for dinner).
How we are allowed, at all, to go from non-axiomatic worlds, physics, economics, finance, to, so strictly defined, axiomatic world of mathematics? Apparently, mathematics does not care whether the problems come from axiomatized system or not! And that tells us that mathematics can not correct logical steps or see the flaws in the system it proudly claims it models. Assumptions coming from non-axiomatized fields, like physics, economics, finance, and into a strict axiomatic system, like mathematics, can produce results that can wreak havoc back in the field where the mathematics is applied.
You may ask, at this point, how we can mix these two logical worlds. One world appear to be very fluid, the real world, with objects selected, of any type, and any kind of relationships. On the other hand, we have mathematical logic world, where we only deal with numbers, or sets of number, and with what appears to be set of quite precise rules, axioms, logic, and well defined sequences of math operations (of addition, subtraction, multiplication, division). Is there a logic that will merge and connect these two worlds? YES! You can mix these two worlds, thus creating brand new, hybrid axiomatic system, but you have to be very careful with the World # 1, the real world's objects and scenarios. Your assumptions there have to be correct. Then, you can use logic used to link these two worlds, one of real world assumptions, the other of mathematics precisely quantifying those assumptions. Note that if assumptions from the real world are wrong , no matter how accurate and correct mathematical and logical operations are, the result (when transferred back to real world) will be wrong. Math and logic can’t help there.

Source:  http://explainingmath.blogspot.com

Matematika Kehidupan

Kerja keras belum tentu produktif, lihat tukang becak, sungguh ia sudah kerja keras mengayuh becaknya hingga ngos-ngosan keringetan, tetapi hasilnya ternyata tidak memadai. Kerja cerdas lebih produktif, tidak terlalu keringetan tetapi hasilnya bisa jauh lebih banyak. Tetapi banyak juga orang yang sudah kerja cerdas, sudah menghasilkan begitu banyak, segala yang dibutuhkan sudah tersedia, ternyata hidupnya tidak tenang, gelisah dan ujung-ujungnya lari ke narkoba atau mendekam di penjara.

Nah, ada jenis kerja lain, yaitu kerja ikhlas. Dapat banyak alhamdulillah, dapat sedikit alhamdulillah, belum dapat, sabar dan berusaha lagi. Seberapapun yang diperoleh dari kerja keras, cerdas dan keikhlasannya, ia bisa menerimanya dengan senang hati karena ia menyadari bahwa wilayah manusia itu hanya berikhtiar, hanya berusaha, sedangkan tentang hasil, di situ ada tangan Tuhan.

Ada orang sudah dapat banyak masih kurang dan hatinya gelisah, makan tak enak tidur tak nyenyak, dimusuhi orang banyak. Sementara yang lain dapatnya sedikit tetapi ia merasa cukup bahkan masih bisa memberi. Dengan tenang ia menikmati hasil jerih payahnya, damai, harmoni dengan lingkungan dan bahkan dihormati orang lain.

Menurut hitungan matematis,orang yang punya uang sepuluh juta rupiah kemudian diambil lima juta untuk membantu biaya sekolah anak-anak yatim maka uangnya yang tersisa hanya tinggal lima juta rupiah. Jika orang itu kemudian mempunyai pola perilaku tetap yaitu selalu memberikan separoh hasil usahanya untuk membantu orang lain yang kesulitan, maka menurut hitungan matematis ia pasti lambat kayanya dibanding jika ia tidak suka memberi. Jika ia menjadi kaya 10 tahun kemudian, maka logikanya jika tidak suka memberi, ia sudah bisa menjadi orang kaya lima tahun lebih cepat.

Tetapi realitas kehidupan sering berbicara lain. Orang yang suka memberi justru lebih cepat kaya sementara orang yang kikir usahanya sering tersendat-sendat. Sama halnya orang dagang yang selalu mengambil keuntungan dengan margin tertinggi justru kalah bersaing dengan pedagang yang mengambil keuntungan dengan margin rendah. Kenapa ?, karena hidup itu bukan hanya matematis, ada matematika bumi dan ada matematika langit. Orang yang keukeuh (bertahan; sunda) dengan hitungan matematis dalam interaksi sosial tanpa disadari ia justru kehilangan peluang non teknis yang nilainya tak terukur secara matematis, yaitu berkah.

Berkah adalah terdayagunanya nikmat secara optimal. Dari uang lima juta rupiah misalnya semua terinvestasi tanpa ada sedikitpun kebocoran, sehingga pertumbuhannya konstan. Sedangkan penghasilan yang tidak berkah dapatnya sepertinya banyak, tetapi yang terdayaguna hanya sedikit karena sebagian besar justru bocor ke wilayah-wilayah yang tak diperlukan.

Matematika langit mengajarkan bahwa harta itu anugerah Tuhan. Tuhan menyuruh manusia untuk bekerja keras dan Tuhan akan memberi menurut kehendak Nya sesuai dengan rumus-rumus matematika langit. Zakat misalnya arti bahasanya adalah suci dan tumbuh, artinya orang yang disiplin membayar zakat hartanya menjadi suci (dari sorotan orang miskin) dan hatinya pun menjadi suci (dari keserakahan matematis).

Filosofi zakat ialah bahwa di dalam harta si kaya ada hak orang lain (miskin), yang meminta atau yang malu meminta. Jika zakat tak dibayarkan, maka maknanya si kaya memakan hak orang miskin. Zakat diartikan tumbuh artinya harta yang dizakati akan berkembang volume dan maknanya secara sehat. Logiskah ini ?

Tuhan mengajarkan melalui pohon. Pohon yang secara regular digunting ranting dan daunnya ia akan tumbuh berkembang secara indah dan berpola, karena dari ranting yang digunting akan tumbuh daun baru yang segar. Jika pohon itu tak pernah dipotong maka pohon itu terus berkembang tetapi tidak indah, tidak berpola dan bahkan bisa menjadi pohon besar yang angker.

sumber dari : sini